Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 255: 116271, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583355

RESUMO

The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.


Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/química
2.
Anal Chem ; 95(9): 4479-4485, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802539

RESUMO

Most organophosphorus pesticide (OP) sensors reported in the literature rely on the inhibition effect of OPs on the activity of acetylcholinesterase (AChE), which suffer from the drawbacks of lack of selective recognition of OPs, high cost, and poor stability. Herein, we proposed a novel chemiluminescence (CL) strategy for the direct detection of glyphosate (an organophosphorus herbicide) with high sensitivity and specificity, which is based on the porous hydroxy zirconium oxide nanozyme (ZrOX-OH) obtained via a facile alkali solution treatment of UIO-66. ZrOX-OH displayed excellent phosphatase-like activity, which could catalyze the dephosphorylation of 3-(2'-spiroadamantyl)-4-methoxy-4-(3'-phosphoryloxyphenyl)-1,2-dioxetane (AMPPD) to generate strong CL. The experimental results showed that the phosphatase-like activity of ZrOX-OH is closely related to the content of hydroxyl groups on their surface. Interestingly, ZrOX-OH with phosphatase-like properties exhibited a unique response to glyphosate because of the consumption of the surface hydroxyl group by the unique carboxyl group of glyphosates and was thus employed to develop a CL sensor for direct and selective detection of glyphosate without using bio-enzymes. The recovery for glyphosate detection of cabbage juice ranged from 96.8 to 103.0%. We believe that the as-proposed CL sensor based on ZrOX-OH with phosphatase-like properties supplies a simpler and more highly selective approach for OP assay and provides a new method for the development of CL sensors for the direct analysis of OPs in real samples.


Assuntos
Acetilcolinesterase , Praguicidas , Acetilcolinesterase/análise , Praguicidas/análise , Compostos Organofosforados/análise , Luminescência , Monoéster Fosfórico Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...